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Atomics: the tool of lock-free programming
Lock-free means “fast”

2

 Compare performance of two programs
 Both programs perform the same computations and get 

the same results
 Both programs are correct

– No “wait loops” or other tricks
 One program uses std::mutex, the other is wait-free (even 

better than lock-free!)
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Lock-free means “fast”

3
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Lock-free means “fast”
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Lock-free means “fast”

5

std::atomic<unsigned long> sum;
 Program A:

void do_work(size_t N, unsigned long* a) {
  for (size_t i = 0; i < N; ++i) sum += a[i];
}

 Program B:
unsigned long sum(0); std::mutex M;
void do_work(size_t N, unsigned long* a) {
  unsigned long s = 0;
  for (size_t i = 0; i < N; ++i) s += a[i];
  std::lock_guard<std::mutex> L(M); sum += s;
}
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Is lock-free faster?

6
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Is lock-free faster?

7

 Algorithm rules supreme
 “Wait-free” has nothing to do with time

– Wait-free refers to the number of compute “steps”
– Steps do not have to be of the same duration

 Atomic operations do not guarantee good performance

 There is no substitute for understanding what you’re doing
– This class is the next best thing

 Let’s now understand C++ atomics

Loude

Loude
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What is an atomic operation?
 Atomic operation is an operation that is guaranteed to 

execute as a single transaction:
– Other threads will see the state of the system before the 

operation started or after it finished, but cannot see any 
intermediate state

– At the low level, atomic operations are special hardware 
instructions (hardware guarantees atomicity)

– This is a general concept, not limited to hardware 
instructions (example: database transactions)

8
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Atomic operation example

 Increment is a “read-modify-write” operation:
– read x from memory
– add 1 to x
– write new x to memory

9

int x = 0;

x = ?

Thread 1

++x;

Thread 2

++x;
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Atomic operation example

 Read-modify-write increment is non-atomic
 This is a data race (i.e. undefined behavior)

10

int x = 0;

x = 1

Thread 1

int tmp = x; // 0
++tmp; // 1
x = tmp; // 1

Thread 2

int tmp = x; // 0
++tmp; // 1

x = tmp; // 1!

what else could happen?

Loude

Loude
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What’s really going on?
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What’s really going on?

12
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More insidious atomic operation example

 Reads and writes do not have to be atomic!
– On x86 they are for built-in types (int, long)

 How to access shared data from multiple threads in C++?

13

int x = 0;
Thread 1

x = 42424242;
Thread 2

tmp = x;

tmp == ?
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Data sharing in C++
 C++03: what’s a thread?
 C++11: std::atomic

#include <atomic>
std::atomic<int> x(0);  // NOT std::atomic<int> x=0;

 ++x is now atomic!
– another thread cannot access x during increment

14

int x = 0;

x = 2

Thread 1

++x;

Thread 2

++x;
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What’s really going on now?
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std::atomic

16

 What C++ types can be made atomic?
 What operations can be done on these types?
 Are all operations on atomic types atomic?
 How fast are atomic operations?

– Are atomic operations slower than non-atomic?
– Are atomic operations faster than locks?

 Is “atomic” same as “lock-free”?

 If atomic operations avoid locks, there is no waiting, right?
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What types can be made atomic?

17

 Any trivially copyable type can be made atomic
 What is trivially copyable?

– Continuous chunk of memory
– Copying the object means copying all bits (memcpy)
– No virtual functions, noexcept constructor

std::atomic<int> i; // OK
std::atomic<double> x; // OK
struct S { long x; long y; };
std::atomic<S> s; // OK!

Loude

Loude

Loude
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What operations can be done on 
std::atomic<T>?

18

 Assignment (read and write) – always
 Special atomic operations
 Other operations depend on the type T
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OK, what operations can be done on 
std::atomic<int>?

19

 One of these is not the same as the others:
std::atomic<int> x{0}; // Not x=0!  x(0) is OK
++x;
x++;
x += 1;
x |= 2;
x *= 2;
int y = x * 2;
x = y + 1;
x = x + 1;
x = x * 2;

does not compile
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OK, what operations can be done on 
std::atomic<int>?

20

 Two of these are not the same as the others:
std::atomic<int> x{0};
++x;
x++;
x += 1;
x |= 2;
x *= 2;
int y = x * 2;
x = y + 1;
x = x + 1;
x = x * 2;

not atomic

Loude
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Are all operations on atomic types atomic?

21

 All operations on the atomic variable are atomic:
std::atomic<int> x{0};
++x; // Atomic pre-increment
x++; // Atomic post-increment
x += 1; // Atomic increment
x |= 2; // Atomic bit set
x *= 2; // No atomic multiplication!
int y = x * 2; // Atomic read of x
x = y + 1; // Atomic write of x
x = x + 1; // Atomic read followed by atomic write!
x = x * 2; // Atomic read followed by atomic write!
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std::atomic<T> and overloaded operators

22

 std::atomic<T> provides operator overloads only for 
atomic operations (incorrect code does not compile     )

 Any expression with atomic variables will not be computed 
atomically (easy to make mistakes     )

 ++x; is the same as x+=1; is the same as x=x+1;
– Unless x is atomic!
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What operations can be done on 
std::atomic<T> for other types?

23

 Assignment and copy (read and write) for all types
– Built-in and user-defined

 Increment and decrement for raw pointers
 Addition, subtraction, and bitwise logic operations for 

integers (++, +=, –, -=, |=, &=, ^=)
 std::atomic<bool> is valid, no special operations
 std::atomic<double> is valid, no special operations

– No atomic increment for floating-point numbers!
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What “other operations” can be done on 
std::atomic<T>?

24

 Explicit reads and writes:
std::atomic<T> x;
T y = x.load(); // Same as T y = x;
x.store(y); // Same as x = y;

 Atomic exchange:
T z = x.exchange(y); // Atomically: z = x; x = y;

 Compare-and-swap (conditional exchange):
bool success = x.compare_exchange_strong(y, z);

// If x==y, make x=z and return true
// Otherwise, set y=x and return false

 Key to most lock-free algorithms

T& y

?
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What is so special about CAS?

25

 Compare-and-swap (CAS) is used in most lock-free 
algorithms

 Example: atomic increment with CAS:
std::atomic<int> x{0};
int x0 = x;
while ( !x.compare_exchange_strong(x0, x0+1) ) {}

 For int, we have atomic increment, but CAS can be used to 
increment doubles, multiply integers, and many more
while ( !x.compare_exchange_strong(x0, x0*2) ) {}

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude



C++ Atomics – CPPCon17 – F.G. Pikus26

What “other operations” can be done on 
std::atomic<T>?

26

 For integer T:
std::atomic<int> x;
x.fetch_add(y); // Same as x += y;
int z = x.fetch_add(y); // Same as z = (x += y) - y;

 Also fetch_sub(), fetch_and(), fetch_or(), fetch_xor()
– Same as +=, -= etc operators

 More verbose but less error-prone than operators and 
expressions
– Including load() and store() instead of operator=()

Loude
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std::atomic<T> and overloaded operators

27

 std::atomic<T> provides operator overloads only for 
atomic operations (incorrect code does not compile     )

 Any expression with atomic variables will not be computed 
atomically (easy to make mistakes     )

 Member functions make atomic operations explicit
 Compilers understand you either way and do exactly what 

you asked
– Not necessarily what you wanted

 Programmers tend to see what they thought you meant 
not what you really meant (x=x+1) 
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How fast are atomic operations?

28
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How fast are atomic operations?

29

 Performance should be measured
 Caution: measurement results will be hardware and 

compiler specific and should not be over-generalized!
 Caution: comparing atomic and non-atomic operations 

may be instructive for understanding of what the hardware 
does, but is rarely directly useful
– Comparing atomic operation with another thread-safe 

alternative is valid and useful
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Are atomic operations slower than non-
atomic?

30
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Are atomic operations slower than non-
atomic?

31
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Are atomic operations faster than locks?

32
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Are atomic operations faster than locks?

33
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Are atomic operations faster than locks?

34
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Are atomic operations faster than locks?

35
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Remember CAS?

36
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Is atomic the same as lock-free?

37

 std::atomic is hiding a huge secret: it’s not always lock-free
long x;
struct A { long x; }
struct B { long x; long y; };
struct C { long x; long y; long z; };
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Is atomic the same as lock-free?

38

lock-free

not lock-free

 std::atomic is hiding a huge secret: it’s not always lock-free
 std::atomic<T>::is_lock_free()

long x;
struct A { long x; }
struct B { long x; long y; };
struct C { long x; long y; long z; };

 Results are run-time and platform dependent
– Why not compile-time? - alignment
– C++17 adds constexpr is_always_lock_free()

Loude
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Is atomic the same as lock-free?

39

lock-free

not lock-free

 std::atomic<T>::is_lock_free() - x86 example
long x;
struct A { long x; }
struct B { long x; long y; }; // atomic move to %mmx 
struct C { long x; int y; };
struct D { int x; int y; int z; };
struct E { long x; long y; long z; }; // >16 bytes

Loude
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Is atomic the same as lock-free?

40

lock-free

not lock-free

 std::atomic<T>::is_lock_free() - x86 example
long x;
struct A { long x; }
struct B { long x; long y; }; // 16-byte atomic move - 
struct C { long x; int y; }; // atomic move to %mmx
struct D { int x; int y; int z; }; // 12 bytes!
struct E { long x; long y; long z; }; // >16 bytes

 alignment and padding matter!
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Do atomic operations wait on each other?

41

 Compare accessing shared vavariable

 

 vs non-shared variable 

std::atomic<int> x;

Thread 1

++x;

Thread 2

++x;

std::atomic<int> x[N];

Thread 1

++x[0];

Thread 2

++x[1];
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Do atomic operations wait on each other?

42
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What’s really going on?

43

Main memory
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CPU Core (registers)

++x[0]
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cache lineexclusive access
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Do atomic operations wait on each other?

44
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Do atomic operations wait on each other?

45

 Algorithm rules supreme
 “Wait-free” has nothing to do with time

– Wait-free refers to the number of compute “steps”
– Steps do not have to be of the same duration

 Atomic operations do wait on each other
– In particular, write operations do
– Read-only operations can scale near-perfectly
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Do atomic operations wait on each other?

46
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Do atomic operations wait on each other?

47

 Atomic operations have to wait for cache line access
– Price of data sharing without races
– Accessing different locations in the same cache line still 

incurs run-time penalty (false sharing)
– Avoid false sharing by aligning per-thread data to 

separate cache lines
● On NUMA machines, may be even separate pages
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Strong and weak compare-and-swap

48

 C++ provides two versions of CAS – weak and strong
 x.compare_exchange_strong(old_x, new_x):

if (x == old_x) { x = new_x; return true; }
else { old_x = x; return false; }

 x.compare_exchange_weak(old_x, new_x): same thing 
but can “spuriously fail” and return false even if x==old_x

 What is the value of old_x if this happens?

Loude
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Strong and weak compare-and-swap

49

 C++ provides two versions of CAS – weak and strong
 x.compare_exchange_strong(old_x, new_x):

if (x == old_x) { x = new_x; return true; }
else { old_x = x; return false; }

 x.compare_exchange_weak(old_x, new_x): same thing 
but can “spuriously fail” and return false even if x==old_x

 What is the value of old_x if this happens? Must be old_x!
 If weak CAS correctly returns x == old_x, why would it fail?
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Strong and weak compare-and-swap

50

 CAS, conceptually (pseudo-code):
bool compare_exchange_strong(T& old_v, T new_v) {
  Lock L; // Get exclusive access
  T tmp = value; // Current value of the atomic
  if (tmp != old_v) { old_v = tmp; return false; }
  value = new_v;
  return true;
}

 Lock is not a real mutex but some form of exclusive access 
implemented in hardware
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Strong and weak compare-and-swap

51

 Read is faster than write:
bool compare_exchange_strong(T& old_v, T new_v) {
  T tmp = value; // Current value of the atomic
  if (tmp != old_v) { old_v = tmp; return false; }
  Lock L; // Get exclusive access
  tmp = value; // value could have changed!
  if (tmp != olv_v) { old_v = tmp; return false; }
  value = new_v;
  return true;
}

 Double-checked locking pattern is back!
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Strong and weak compare-and-swap

52

 If exclusive access is hard to get, let someone else try:
bool compare_exchange_weak(T& old_v, T new_v) {
  T tmp = value; // Current value of the atomic
  if (tmp != old_v) { old_v = tmp; return false; }
  TimedLock L; // Get exclusive access or fail
  if (!L.locked()) return false; // old_v is correct
  tmp = value; // value could have changed!
  if (tmp != olv_v) { old_v = tmp; return false; }
  value = new_v;
  return true;
}

Loude

Loude

Loude
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But wait, there is more...

53

 Atomic variables are rarely used by themselves
 Atomic queue:

int q[N];
std::atomic<size_t> front;
void push(int x) {
  size_t my_slot = front.fetch_add(1);
  q[my_slot] = x;
}

 Atomic variable is an index to (non-atomic) memory

MUCH

atomic

exclusive slot

Loude
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But wait, there is more...

54

 Atomic list:
struct node { int value; node* next; };
std::atomic<node*> head;
void push_front(int x) {
  node* new_n = new node;
  new_n→value = x;
  node* old_h = head;
  do { new_n→next = old_h; }
  while (!head.compare_exchange_strong(old_h,new_n);
}
 

 Atomic variable is a pointer to (non-atomic) memory  

MUCH

head has not changed

new node is new head
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Atomic variables as gateways to memory 
access (generalized pointers)

55

 Atomics are used to get exclusive access to memory:

 or to reveal memory to other threads:

  

atomic p

memory location memory location
memory location

my unique p fetch and
modify

my memory location

memory location

my unique p 

new memory location

atomic p swap

Loude
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Atomic variables as gateways to memory 
access (generalized pointers)

56

 Atomics are used to get exclusive access to memory or to 
reveal memory to other threads

 But most memory is not atomic!
 What guarantees that other threads see this memory in 

the desired state
– For acquiring exclusive access: data may be prepared 

by other threads, must be completed
– For releasing into shared access: data is prepared by the 

owner thread, must become visible to everyone

  

Loude

Loude
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Memory barriers – the other side of atomics

57

 Memory barriers control how changes to memory made by 
one CPU become visible to other CPUs

 Visibility of non-atomic changes is not guaranteed  

Main memory

x=0

CPU Core (registers)

++x;++x;

x=2      cache

CPU Core (registers)

--x;--x;

x=-2      cache
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Memory barriers

58

 Synchronization of data access is not possible if we cannot 
control the order of memory accesses

 This is global control, across all CPUs
 Such control is provided by memory barriers
 Memory barriers are implemented by the hardware
 Memory barriers are invoked through processor-specific 

instructions (or modifiers on other instructions)
– Barriers are often “attributes” on read/write operations, 

ensuring the specified order of reads and writes
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Memory barriers in C++

59

 C++03 as no portable memory barriers
 C++11 provides standard memory barriers
 Memory barriers are closely related to “memory order” – 

they are what ensures the memory order
 C++ memory barriers are modifiers on atomic operations

– Actual implementation may vary

 Example:
std::atomic<int> x;
x.store(1, std::memory_order_release);
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No barriers – std::memory_order_relaxed

60

 x.fetch_add(1, std::memory_order_relaxed);

Memory

Program order

x

a b c x

x

Observed order
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Acquire barrier

61

 Acquire barrier guarantees that all memory operations 
scheduled after the barrier in the program order become 
visible after the barrier
– “All operations” not “all reads” or “all writes”, i.e. both 

reads and writes
– “All operations” not just operations on the same 

variable that the barrier was on

 Reads and writes cannot be reordered from after to before 
the barrier
– Only for the thread that issued the barrier!
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Loude

Loude

Loude
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Acquire barrier – std::memory_order_acquire

62

 x.load(std::memory_order_acquire);

Memory

Program order

x
a b c x

x

Observed order
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Release barrier

63

 Release barrier guarantees that all memory operations 
scheduled before the barrier in the program order become 
visible before the barrier

 Reads and writes cannot be reordered from before to after 
the barrier
– Only for the thread that issued the barrier!

Loude

Loude

Loude
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Release barrier – std::memory_order_release

64

 x.store(1, std::memory_order_release);

Memory

Program order

x
a b c x

x

Observed order
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Acquire-release order

65

 Acquire and release barriers are often used together:
 Thread 1 writes atomic variable x with release barrier 
 Thread 2 reads  atomic variable x with acquire barrier
 All memory writes that happen in thread 1 before the 

barrier (in program order) become visible in thread 2 after 
the barrier

 Thread 1 prepares data (does some writes) then releases 
(publishes) it by updating atomic variable x

 Thread 2 acquires atomic variable x and the data is 
guaranteed to be visible

Loude

Loude

Loude

Loude
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Acquire-release protocol

66

 

 Both threads must use matching barriers and the same x!

Memory

Thread 1 x

a b c x

x?Thread 2

release-store

acquire-load

?

{a, b}
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Barriers and locks

67

 Acquire and release barriers are used in locks:
Lock L;
L.lock();
++x;
L.unlock(); 

std::atomic<int> l(0);
l.store(1, std::memory_order_acquire);
++x;
l.store(0, std::memory_order_release);

std::atomic<int> l(0);
while (l.exchange(1, std::memory_order_acquire));
++x;
l.store(0, std::memory_order_release);

Memory

l

x a b l

l

ll

acquire release

critical section

as written

as executed
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Bidirectional barriers

68

 Acquire-Release (std::memory_order_acq_rel) combines 
acquire and release barriers – no operation can move 
across the barrier
– But only if both threads use the same atomic variable!

 Sequential consistency (std::memory_order_seq_cst) 
removes that requirement and establishes single total 
modification order of atomic variables
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Why does CAS have two memory orders?

69

 Read is faster than write:
bool compare_exchange_strong(T& old_v, T new_v, 
memory_order on_success, memory_order on_failure) {
  T tmp = value.load(on_failure);
  if (tmp != old_v) { old_v = tmp; return false; }
  Lock L; // Get exclusive access
  tmp = value; // value could have changed!
  if (tmp != olv_v) { old_v = tmp; return false; }
  value.store(new_v, on_success);
  return true;
}
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Default memory order

70

 What is the default memory order if none is specified?
y=x.load(); x.fetch_add(42);

 std::memory_order_seq_cst – the strongest order
 Same for the overloaded operators:

y=x; x += 42;
 Can’t change the memory order for the operators
 Can specify memory order for functions to be weaker than 

the default:
y=x.load(std::memory_order_acquire);
x.fetch_add(42, std::memory_order_relaxed);
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Why change memory order?

71

 Performance
 Expressing intent
 As programmers we address two audiences...
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Why change memory order?

72

 Performance
– Audience #1 – computers

 Expressing intent
– Audience #2 – other programmers
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Memory barriers and performance

73
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Memory barriers are expensive

74

 Memory barriers may be more expensive than atomic 
operations themselves

 Caution: not all platforms provide all barriers, so 
performance measurements may be misleading

 On x86:
– all loads are acquire-loads, all stores are release-stores

● but adding the other barrier is expensive
– all read-modify-write operations are acquire-release
– acq_rel and seq_cst are the same thing
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Memory order expresses programmer’s 
intent

75

 Lock-free code is hard to write
– It’s harder to write if you want it it work correctly

 It’s also hard to read, so clarity matters
– Also to the writer, to reason that it is correct

 Memory order specification is important to express why the 
atomic operations are used and what the programmer 
wanted to happen

Loude

Loude
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Memory order expresses programmer’s 
intent

76

 What you wrote:
std::atomic<size_t> count;
count.fetch_add(1, std::memory_order_relaxed);

 What you meant:
count is incremented concurrently, not used to index any 
memory or as a reference count (no other memory access 
depends on it) – this is some sort of counter

 Note: on x86, fetch_add() is actually memory_order_acc_rel
 But note: the compiler could know the difference and 

reorder some operations across fetch_add()

Loude

Loude
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Memory order expresses programmer’s 
intent

77

 What you wrote:
std::atomic<size_t> count;
count.fetch_add(1, std::memory_order_release);

 What you meant:
count indexes some memory that was prepared by this 
thread and is now released to other threads, like this:
T data[max_count];
initialize(data[count.load(std::memory_order_relaxed)]);
count.fetch_add(1, std::memory_order_release);

nobody can see
new data yet

 

now they can see it

 

Loude

Loude
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Memory order expresses programmer’s 
intent

78

 What you wrote:
std::atomic<size_t> count;
++count;

 What you meant:
count one of several atomic variables used to access the 
same memory and kept in sync by some very tricky code

 or:
I have no idea what I am doing but it seems to work; using 
a lock would probably work just as well but this is way 
cooler!

Loude
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Note on sequential consistency

79

 Sequential consistency makes your programs slow
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Note on sequential consistency

80

 Sequential consistency makes your programs slow
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Note on sequential consistency

81

 Sequential consistency makes your program easier to 
understand and often has no performance penalty

 But making every atomic operation memory_order_seq_cst 
is not necessary for sequential consistency and usually 
obscures the programmer’s intent

 Consider:
– Lock-based program can be sequentially consistent, but
– Lock implementation does not need 

memory_order_seq_cst, only memory_order_acquire and 
memory_order_release
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Mandatory gripe about the C++ standard

82

 What you wrote:
class C { std::atomic<size_t> N; T* p; … };
C::~C() { cleanup(p, N.load(std::memory_order_relaxed));

 What you said:
C::N may be accessed by another thread while the object 
is being destructed – be very afraid!

 What you probably meant:
I wish the standard let me say N.load_nonatomic() so I 
don’t have to terrify people unless I really want to 

Loude

Loude
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C++ and std::atomic 

83

 Atomic variables and operations on them
– Member function operations (use them) and operators

 Performance of atomic operations (not always fastest)

 Memory barriers
– Essential for interaction of threads through memory
– Significantly affect performance

Loude

Loude
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When to use std::atomic in your C++ code 

84

 High-performance concurrent lock-free data structures
– Prove it by measuring performance

 Data structures that are difficult or expensive to implement 
with locks (lists, trees)

 When drawbacks of locks are important (deadlocks, priority 
conflicts, latency problems)

 When concurrent synchronization can be achieved by the 
cheapest atomic operations (load and store) – see my talk 
on RCU

Loude

Loude
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Loude
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std::atomic<questions> any_questions;
any_questions.load();
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