
Fedor G Pikus

C++ atomics: from
basic to advanced.
What do they do?

Chief Scientist

Design2Silicon Division

Semptember 25, 2017

really

C++ Atomics – CPPCon17 – F.G. Pikus2

Atomics: the tool of lock-free programming
Lock-free means “fast”

2

 Compare performance of two programs
 Both programs perform the same computations and get

the same results
 Both programs are correct

– No “wait loops” or other tricks
 One program uses std::mutex, the other is wait-free (even

better than lock-free!)

C++ Atomics – CPPCon17 – F.G. Pikus3

Lock-free means “fast”

3

1 2 4 8 16 32 64 128
0

10

20

30

40

50

Number of threads

S
pe

ed
up

C++ Atomics – CPPCon17 – F.G. Pikus4

Lock-free means “fast”

4

1 2 4 8 16 32 64 128
0

10

20

30

40

50
Wait-free

Mutex

Number of threads

S
pe

ed
up

C++ Atomics – CPPCon17 – F.G. Pikus5

Lock-free means “fast”

5

std::atomic<unsigned long> sum;
 Program A:

void do_work(size_t N, unsigned long* a) {
 for (size_t i = 0; i < N; ++i) sum += a[i];
}

 Program B:
unsigned long sum(0); std::mutex M;
void do_work(size_t N, unsigned long* a) {
 unsigned long s = 0;
 for (size_t i = 0; i < N; ++i) s += a[i];
 std::lock_guard<std::mutex> L(M); sum += s;
}

C++ Atomics – CPPCon17 – F.G. Pikus6

Is lock-free faster?

6

1 2 4 8 16 32 64 128
1E+3

1E+4

1E+5

1E+6

1E+7

Wait-free

Mutex

Number of threads

T
im

e,
 n

s

Loude

C++ Atomics – CPPCon17 – F.G. Pikus7

Is lock-free faster?

7

 Algorithm rules supreme
 “Wait-free” has nothing to do with time

– Wait-free refers to the number of compute “steps”
– Steps do not have to be of the same duration

 Atomic operations do not guarantee good performance

 There is no substitute for understanding what you’re doing
– This class is the next best thing

 Let’s now understand C++ atomics

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus8

What is an atomic operation?
 Atomic operation is an operation that is guaranteed to

execute as a single transaction:
– Other threads will see the state of the system before the

operation started or after it finished, but cannot see any
intermediate state

– At the low level, atomic operations are special hardware
instructions (hardware guarantees atomicity)

– This is a general concept, not limited to hardware
instructions (example: database transactions)

8

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus9

Atomic operation example

 Increment is a “read-modify-write” operation:
– read x from memory
– add 1 to x
– write new x to memory

9

int x = 0;

x = ?

Thread 1

++x;

Thread 2

++x;

C++ Atomics – CPPCon17 – F.G. Pikus10

Atomic operation example

 Read-modify-write increment is non-atomic
 This is a data race (i.e. undefined behavior)

10

int x = 0;

x = 1

Thread 1

int tmp = x; // 0
++tmp; // 1
x = tmp; // 1

Thread 2

int tmp = x; // 0
++tmp; // 1

x = tmp; // 1!

what else could happen?

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus11

What’s really going on?

11

Main memory

x=

CPU Core (registers)

x

x L3 cache

x L1 cache

x L2 cache

CPU Core (registers)

x

x L1 cache

x L2 cache

01

what else could happen?

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus12

What’s really going on?

12

Main memory

x=0

CPU Core (registers)

x

x L3 cache

x L1 cache

x L2 cache

CPU Core (registers)

x

x L1 cache

x L2 cache

CPU Core (registers)

x=0

x L1 cache

x L2 cache

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus13

More insidious atomic operation example

 Reads and writes do not have to be atomic!
– On x86 they are for built-in types (int, long)

 How to access shared data from multiple threads in C++?

13

int x = 0;
Thread 1

x = 42424242;
Thread 2

tmp = x;

tmp == ?

C++ Atomics – CPPCon17 – F.G. Pikus14

Data sharing in C++
 C++03: what’s a thread?
 C++11: std::atomic

#include <atomic>
std::atomic<int> x(0); // NOT std::atomic<int> x=0;

 ++x is now atomic!
– another thread cannot access x during increment

14

int x = 0;

x = 2

Thread 1

++x;

Thread 2

++x;

C++ Atomics – CPPCon17 – F.G. Pikus15

What’s really going on now?

15

Main memory

x=0

CPU Core (registers)

x

x L3 cache

x L1 cache

x L2 cache

CPU Core (registers)

x

x L1 cache

x L2 cache

CPU Core (registers)

x=2

x L1 cache

x L2 cache

x=1x=2

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus16

std::atomic

16

 What C++ types can be made atomic?
 What operations can be done on these types?
 Are all operations on atomic types atomic?
 How fast are atomic operations?

– Are atomic operations slower than non-atomic?
– Are atomic operations faster than locks?

 Is “atomic” same as “lock-free”?

 If atomic operations avoid locks, there is no waiting, right?

C++ Atomics – CPPCon17 – F.G. Pikus17

What types can be made atomic?

17

 Any trivially copyable type can be made atomic
 What is trivially copyable?

– Continuous chunk of memory
– Copying the object means copying all bits (memcpy)
– No virtual functions, noexcept constructor

std::atomic<int> i; // OK
std::atomic<double> x; // OK
struct S { long x; long y; };
std::atomic<S> s; // OK!

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus18

What operations can be done on
std::atomic<T>?

18

 Assignment (read and write) – always
 Special atomic operations
 Other operations depend on the type T

C++ Atomics – CPPCon17 – F.G. Pikus19

OK, what operations can be done on
std::atomic<int>?

19

 One of these is not the same as the others:
std::atomic<int> x{0}; // Not x=0! x(0) is OK
++x;
x++;
x += 1;
x |= 2;
x *= 2;
int y = x * 2;
x = y + 1;
x = x + 1;
x = x * 2;

does not compile

C++ Atomics – CPPCon17 – F.G. Pikus20

OK, what operations can be done on
std::atomic<int>?

20

 Two of these are not the same as the others:
std::atomic<int> x{0};
++x;
x++;
x += 1;
x |= 2;
x *= 2;
int y = x * 2;
x = y + 1;
x = x + 1;
x = x * 2;

not atomic

Loude

C++ Atomics – CPPCon17 – F.G. Pikus21

Are all operations on atomic types atomic?

21

 All operations on the atomic variable are atomic:
std::atomic<int> x{0};
++x; // Atomic pre-increment
x++; // Atomic post-increment
x += 1; // Atomic increment
x |= 2; // Atomic bit set
x *= 2; // No atomic multiplication!
int y = x * 2; // Atomic read of x
x = y + 1; // Atomic write of x
x = x + 1; // Atomic read followed by atomic write!
x = x * 2; // Atomic read followed by atomic write!

C++ Atomics – CPPCon17 – F.G. Pikus22

std::atomic<T> and overloaded operators

22

 std::atomic<T> provides operator overloads only for
atomic operations (incorrect code does not compile)

 Any expression with atomic variables will not be computed
atomically (easy to make mistakes)

 ++x; is the same as x+=1; is the same as x=x+1;
– Unless x is atomic!

C++ Atomics – CPPCon17 – F.G. Pikus23

What operations can be done on
std::atomic<T> for other types?

23

 Assignment and copy (read and write) for all types
– Built-in and user-defined

 Increment and decrement for raw pointers
 Addition, subtraction, and bitwise logic operations for

integers (++, +=, –, -=, |=, &=, ^=)
 std::atomic<bool> is valid, no special operations
 std::atomic<double> is valid, no special operations

– No atomic increment for floating-point numbers!

C++ Atomics – CPPCon17 – F.G. Pikus24

What “other operations” can be done on
std::atomic<T>?

24

 Explicit reads and writes:
std::atomic<T> x;
T y = x.load(); // Same as T y = x;
x.store(y); // Same as x = y;

 Atomic exchange:
T z = x.exchange(y); // Atomically: z = x; x = y;

 Compare-and-swap (conditional exchange):
bool success = x.compare_exchange_strong(y, z);

// If x==y, make x=z and return true
// Otherwise, set y=x and return false

 Key to most lock-free algorithms

T& y

?

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus25

What is so special about CAS?

25

 Compare-and-swap (CAS) is used in most lock-free
algorithms

 Example: atomic increment with CAS:
std::atomic<int> x{0};
int x0 = x;
while (!x.compare_exchange_strong(x0, x0+1)) {}

 For int, we have atomic increment, but CAS can be used to
increment doubles, multiply integers, and many more
while (!x.compare_exchange_strong(x0, x0*2)) {}

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus26

What “other operations” can be done on
std::atomic<T>?

26

 For integer T:
std::atomic<int> x;
x.fetch_add(y); // Same as x += y;
int z = x.fetch_add(y); // Same as z = (x += y) - y;

 Also fetch_sub(), fetch_and(), fetch_or(), fetch_xor()
– Same as +=, -= etc operators

 More verbose but less error-prone than operators and
expressions
– Including load() and store() instead of operator=()

Loude

C++ Atomics – CPPCon17 – F.G. Pikus27

std::atomic<T> and overloaded operators

27

 std::atomic<T> provides operator overloads only for
atomic operations (incorrect code does not compile)

 Any expression with atomic variables will not be computed
atomically (easy to make mistakes)

 Member functions make atomic operations explicit
 Compilers understand you either way and do exactly what

you asked
– Not necessarily what you wanted

 Programmers tend to see what they thought you meant
not what you really meant (x=x+1)

C++ Atomics – CPPCon17 – F.G. Pikus28

How fast are atomic operations?

28

C++ Atomics – CPPCon17 – F.G. Pikus29

How fast are atomic operations?

29

 Performance should be measured
 Caution: measurement results will be hardware and

compiler specific and should not be over-generalized!
 Caution: comparing atomic and non-atomic operations

may be instructive for understanding of what the hardware
does, but is rarely directly useful
– Comparing atomic operation with another thread-safe

alternative is valid and useful

C++ Atomics – CPPCon17 – F.G. Pikus30

Are atomic operations slower than non-
atomic?

30

C++ Atomics – CPPCon17 – F.G. Pikus31

Are atomic operations slower than non-
atomic?

31

1 2 4 8 16 32 64 128
1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

read atomic read

write atomic write

++ ++ atomic

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

C++ Atomics – CPPCon17 – F.G. Pikus32

Are atomic operations faster than locks?

32

C++ Atomics – CPPCon17 – F.G. Pikus33

Are atomic operations faster than locks?

33

1 2 4 8 16 32 64 128
1E+06

1E+07

1E+08

1E+09

++ atomic

++ mutex

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

C++ Atomics – CPPCon17 – F.G. Pikus34

Are atomic operations faster than locks?

34

1 2 4 8 16 32 64 128
1E+06

1E+07

1E+08

1E+09

++ atomic

++ mutex

++ spinlock

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d
which

Broadwell-EX, 120 cores

C++ Atomics – CPPCon17 – F.G. Pikus35

Are atomic operations faster than locks?

35

1 2 4 8 16 32 64 128
1E+06

1E+07

1E+08

1E+09
++ atomic
++ mutex
++ spinlock

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

Haswell, 4 cores

C++ Atomics – CPPCon17 – F.G. Pikus36

Remember CAS?

36

Broadwell-EX, 120 cores

1 2 4 8 16 32 64 128
1E+06

1E+07

1E+08

1E+09
++ atomic
++ mutex
++ spinlock
++ CAS

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

C++ Atomics – CPPCon17 – F.G. Pikus37

Is atomic the same as lock-free?

37

 std::atomic is hiding a huge secret: it’s not always lock-free
long x;
struct A { long x; }
struct B { long x; long y; };
struct C { long x; long y; long z; };

C++ Atomics – CPPCon17 – F.G. Pikus38

Is atomic the same as lock-free?

38

lock-free

not lock-free

 std::atomic is hiding a huge secret: it’s not always lock-free
 std::atomic<T>::is_lock_free()

long x;
struct A { long x; }
struct B { long x; long y; };
struct C { long x; long y; long z; };

 Results are run-time and platform dependent
– Why not compile-time? - alignment
– C++17 adds constexpr is_always_lock_free()

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus39

Is atomic the same as lock-free?

39

lock-free

not lock-free

 std::atomic<T>::is_lock_free() - x86 example
long x;
struct A { long x; }
struct B { long x; long y; }; // atomic move to %mmx
struct C { long x; int y; };
struct D { int x; int y; int z; };
struct E { long x; long y; long z; }; // >16 bytes

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus40

Is atomic the same as lock-free?

40

lock-free

not lock-free

 std::atomic<T>::is_lock_free() - x86 example
long x;
struct A { long x; }
struct B { long x; long y; }; // 16-byte atomic move -
struct C { long x; int y; }; // atomic move to %mmx
struct D { int x; int y; int z; }; // 12 bytes!
struct E { long x; long y; long z; }; // >16 bytes

 alignment and padding matter!

C++ Atomics – CPPCon17 – F.G. Pikus41

Do atomic operations wait on each other?

41

 Compare accessing shared vavariable

 vs non-shared variable

std::atomic<int> x;

Thread 1

++x;

Thread 2

++x;

std::atomic<int> x[N];

Thread 1

++x[0];

Thread 2

++x[1];

C++ Atomics – CPPCon17 – F.G. Pikus42

Do atomic operations wait on each other?

42

1 2 4 8 16 32 64 128
1E+07

1E+08

1E+09

shared not shared

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

Loude

C++ Atomics – CPPCon17 – F.G. Pikus43

What’s really going on?

43

Main memory

x[0] x[1] x[2] ...

CPU Core (registers)

++x[0]

x[0] x[1] x[2] … L3 cache

x[0] x[1] L1 cache

x[0] x[1] L2 cache

CPU Core (registers)

++x[1]

x[0] x[1] L1 cache

x[0] x[1] L2 cache

cache lineexclusive access

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus44

Do atomic operations wait on each other?

44

1 2 4 8 16 32 64 128
0

10

20

30

40

50
Wait-free

Mutex

Number of threads

S
pe

ed
up

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus45

Do atomic operations wait on each other?

45

 Algorithm rules supreme
 “Wait-free” has nothing to do with time

– Wait-free refers to the number of compute “steps”
– Steps do not have to be of the same duration

 Atomic operations do wait on each other
– In particular, write operations do
– Read-only operations can scale near-perfectly

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus46

Do atomic operations wait on each other?

46

1 2 4 8 16 32 64 128
1E+07

1E+08

1E+09

1E+10

shared

not shared

false shared

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus47

Do atomic operations wait on each other?

47

 Atomic operations have to wait for cache line access
– Price of data sharing without races
– Accessing different locations in the same cache line still

incurs run-time penalty (false sharing)
– Avoid false sharing by aligning per-thread data to

separate cache lines
● On NUMA machines, may be even separate pages

C++ Atomics – CPPCon17 – F.G. Pikus48

Strong and weak compare-and-swap

48

 C++ provides two versions of CAS – weak and strong
 x.compare_exchange_strong(old_x, new_x):

if (x == old_x) { x = new_x; return true; }
else { old_x = x; return false; }

 x.compare_exchange_weak(old_x, new_x): same thing
but can “spuriously fail” and return false even if x==old_x

 What is the value of old_x if this happens?

Loude

C++ Atomics – CPPCon17 – F.G. Pikus49

Strong and weak compare-and-swap

49

 C++ provides two versions of CAS – weak and strong
 x.compare_exchange_strong(old_x, new_x):

if (x == old_x) { x = new_x; return true; }
else { old_x = x; return false; }

 x.compare_exchange_weak(old_x, new_x): same thing
but can “spuriously fail” and return false even if x==old_x

 What is the value of old_x if this happens? Must be old_x!
 If weak CAS correctly returns x == old_x, why would it fail?

C++ Atomics – CPPCon17 – F.G. Pikus50

Strong and weak compare-and-swap

50

 CAS, conceptually (pseudo-code):
bool compare_exchange_strong(T& old_v, T new_v) {
 Lock L; // Get exclusive access
 T tmp = value; // Current value of the atomic
 if (tmp != old_v) { old_v = tmp; return false; }
 value = new_v;
 return true;
}

 Lock is not a real mutex but some form of exclusive access
implemented in hardware

C++ Atomics – CPPCon17 – F.G. Pikus51

Strong and weak compare-and-swap

51

 Read is faster than write:
bool compare_exchange_strong(T& old_v, T new_v) {
 T tmp = value; // Current value of the atomic
 if (tmp != old_v) { old_v = tmp; return false; }
 Lock L; // Get exclusive access
 tmp = value; // value could have changed!
 if (tmp != olv_v) { old_v = tmp; return false; }
 value = new_v;
 return true;
}

 Double-checked locking pattern is back!

C++ Atomics – CPPCon17 – F.G. Pikus52

Strong and weak compare-and-swap

52

 If exclusive access is hard to get, let someone else try:
bool compare_exchange_weak(T& old_v, T new_v) {
 T tmp = value; // Current value of the atomic
 if (tmp != old_v) { old_v = tmp; return false; }
 TimedLock L; // Get exclusive access or fail
 if (!L.locked()) return false; // old_v is correct
 tmp = value; // value could have changed!
 if (tmp != olv_v) { old_v = tmp; return false; }
 value = new_v;
 return true;
}

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus53

But wait, there is more...

53

 Atomic variables are rarely used by themselves
 Atomic queue:

int q[N];
std::atomic<size_t> front;
void push(int x) {
 size_t my_slot = front.fetch_add(1);
 q[my_slot] = x;
}

 Atomic variable is an index to (non-atomic) memory

MUCH

atomic

exclusive slot

Loude

C++ Atomics – CPPCon17 – F.G. Pikus54

But wait, there is more...

54

 Atomic list:
struct node { int value; node* next; };
std::atomic<node*> head;
void push_front(int x) {
 node* new_n = new node;
 new_n→value = x;
 node* old_h = head;
 do { new_n→next = old_h; }
 while (!head.compare_exchange_strong(old_h,new_n);
}

 Atomic variable is a pointer to (non-atomic) memory

MUCH

head has not changed

new node is new head

C++ Atomics – CPPCon17 – F.G. Pikus55

Atomic variables as gateways to memory
access (generalized pointers)

55

 Atomics are used to get exclusive access to memory:

 or to reveal memory to other threads:

atomic p

memory location memory location
memory location

my unique p fetch and
modify

my memory location

memory location

my unique p

new memory location

atomic p swap

Loude

C++ Atomics – CPPCon17 – F.G. Pikus56

Atomic variables as gateways to memory
access (generalized pointers)

56

 Atomics are used to get exclusive access to memory or to
reveal memory to other threads

 But most memory is not atomic!
 What guarantees that other threads see this memory in

the desired state
– For acquiring exclusive access: data may be prepared

by other threads, must be completed
– For releasing into shared access: data is prepared by the

owner thread, must become visible to everyone

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus57

Memory barriers – the other side of atomics

57

 Memory barriers control how changes to memory made by
one CPU become visible to other CPUs

 Visibility of non-atomic changes is not guaranteed

Main memory

x=0

CPU Core (registers)

++x;++x;

x=2 cache

CPU Core (registers)

--x;--x;

x=-2 cache

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus58

Memory barriers

58

 Synchronization of data access is not possible if we cannot
control the order of memory accesses

 This is global control, across all CPUs
 Such control is provided by memory barriers
 Memory barriers are implemented by the hardware
 Memory barriers are invoked through processor-specific

instructions (or modifiers on other instructions)
– Barriers are often “attributes” on read/write operations,

ensuring the specified order of reads and writes

C++ Atomics – CPPCon17 – F.G. Pikus59

Memory barriers in C++

59

 C++03 as no portable memory barriers
 C++11 provides standard memory barriers
 Memory barriers are closely related to “memory order” –

they are what ensures the memory order
 C++ memory barriers are modifiers on atomic operations

– Actual implementation may vary

 Example:
std::atomic<int> x;
x.store(1, std::memory_order_release);

C++ Atomics – CPPCon17 – F.G. Pikus60

No barriers – std::memory_order_relaxed

60

 x.fetch_add(1, std::memory_order_relaxed);

Memory

Program order

x

a b c x

x

Observed order

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus61

Acquire barrier

61

 Acquire barrier guarantees that all memory operations
scheduled after the barrier in the program order become
visible after the barrier
– “All operations” not “all reads” or “all writes”, i.e. both

reads and writes
– “All operations” not just operations on the same

variable that the barrier was on

 Reads and writes cannot be reordered from after to before
the barrier
– Only for the thread that issued the barrier!

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus62

Acquire barrier – std::memory_order_acquire

62

 x.load(std::memory_order_acquire);

Memory

Program order

x
a b c x

x

Observed order

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus63

Release barrier

63

 Release barrier guarantees that all memory operations
scheduled before the barrier in the program order become
visible before the barrier

 Reads and writes cannot be reordered from before to after
the barrier
– Only for the thread that issued the barrier!

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus64

Release barrier – std::memory_order_release

64

 x.store(1, std::memory_order_release);

Memory

Program order

x
a b c x

x

Observed order

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus65

Acquire-release order

65

 Acquire and release barriers are often used together:
 Thread 1 writes atomic variable x with release barrier
 Thread 2 reads atomic variable x with acquire barrier
 All memory writes that happen in thread 1 before the

barrier (in program order) become visible in thread 2 after
the barrier

 Thread 1 prepares data (does some writes) then releases
(publishes) it by updating atomic variable x

 Thread 2 acquires atomic variable x and the data is
guaranteed to be visible

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus66

Acquire-release protocol

66

 Both threads must use matching barriers and the same x!

Memory

Thread 1 x

a b c x

x?Thread 2

release-store

acquire-load

?

{a, b}

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus67

Barriers and locks

67

 Acquire and release barriers are used in locks:
Lock L;
L.lock();
++x;
L.unlock();

std::atomic<int> l(0);
l.store(1, std::memory_order_acquire);
++x;
l.store(0, std::memory_order_release);

std::atomic<int> l(0);
while (l.exchange(1, std::memory_order_acquire));
++x;
l.store(0, std::memory_order_release);

Memory

l

x a b l

l

ll

acquire release

critical section

as written

as executed

C++ Atomics – CPPCon17 – F.G. Pikus68

Bidirectional barriers

68

 Acquire-Release (std::memory_order_acq_rel) combines
acquire and release barriers – no operation can move
across the barrier
– But only if both threads use the same atomic variable!

 Sequential consistency (std::memory_order_seq_cst)
removes that requirement and establishes single total
modification order of atomic variables

C++ Atomics – CPPCon17 – F.G. Pikus69

Why does CAS have two memory orders?

69

 Read is faster than write:
bool compare_exchange_strong(T& old_v, T new_v,
memory_order on_success, memory_order on_failure) {
 T tmp = value.load(on_failure);
 if (tmp != old_v) { old_v = tmp; return false; }
 Lock L; // Get exclusive access
 tmp = value; // value could have changed!
 if (tmp != olv_v) { old_v = tmp; return false; }
 value.store(new_v, on_success);
 return true;
}

C++ Atomics – CPPCon17 – F.G. Pikus70

Default memory order

70

 What is the default memory order if none is specified?
y=x.load(); x.fetch_add(42);

 std::memory_order_seq_cst – the strongest order
 Same for the overloaded operators:

y=x; x += 42;
 Can’t change the memory order for the operators
 Can specify memory order for functions to be weaker than

the default:
y=x.load(std::memory_order_acquire);
x.fetch_add(42, std::memory_order_relaxed);

C++ Atomics – CPPCon17 – F.G. Pikus71

Why change memory order?

71

 Performance
 Expressing intent
 As programmers we address two audiences...

C++ Atomics – CPPCon17 – F.G. Pikus72

Why change memory order?

72

 Performance
– Audience #1 – computers

 Expressing intent
– Audience #2 – other programmers

C++ Atomics – CPPCon17 – F.G. Pikus73

Memory barriers and performance

73

1 2 4 8 16 32 64 128
1E+07

1E+08

1E+09

1E+10

write, non-atomic

write, seq_cst

write, relaxed

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

atomic_x=1;

C++ Atomics – CPPCon17 – F.G. Pikus74

Memory barriers are expensive

74

 Memory barriers may be more expensive than atomic
operations themselves

 Caution: not all platforms provide all barriers, so
performance measurements may be misleading

 On x86:
– all loads are acquire-loads, all stores are release-stores

● but adding the other barrier is expensive
– all read-modify-write operations are acquire-release
– acq_rel and seq_cst are the same thing

C++ Atomics – CPPCon17 – F.G. Pikus75

Memory order expresses programmer’s
intent

75

 Lock-free code is hard to write
– It’s harder to write if you want it it work correctly

 It’s also hard to read, so clarity matters
– Also to the writer, to reason that it is correct

 Memory order specification is important to express why the
atomic operations are used and what the programmer
wanted to happen

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus76

Memory order expresses programmer’s
intent

76

 What you wrote:
std::atomic<size_t> count;
count.fetch_add(1, std::memory_order_relaxed);

 What you meant:
count is incremented concurrently, not used to index any
memory or as a reference count (no other memory access
depends on it) – this is some sort of counter

 Note: on x86, fetch_add() is actually memory_order_acc_rel
 But note: the compiler could know the difference and

reorder some operations across fetch_add()

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus77

Memory order expresses programmer’s
intent

77

 What you wrote:
std::atomic<size_t> count;
count.fetch_add(1, std::memory_order_release);

 What you meant:
count indexes some memory that was prepared by this
thread and is now released to other threads, like this:
T data[max_count];
initialize(data[count.load(std::memory_order_relaxed)]);
count.fetch_add(1, std::memory_order_release);

nobody can see
new data yet

now they can see it

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus78

Memory order expresses programmer’s
intent

78

 What you wrote:
std::atomic<size_t> count;
++count;

 What you meant:
count one of several atomic variables used to access the
same memory and kept in sync by some very tricky code

 or:
I have no idea what I am doing but it seems to work; using
a lock would probably work just as well but this is way
cooler!

Loude

C++ Atomics – CPPCon17 – F.G. Pikus79

Note on sequential consistency

79

 Sequential consistency makes your programs slow

C++ Atomics – CPPCon17 – F.G. Pikus80

Note on sequential consistency

80

 Sequential consistency makes your programs slow

C++ Atomics – CPPCon17 – F.G. Pikus81

Note on sequential consistency

81

 Sequential consistency makes your program easier to
understand and often has no performance penalty

 But making every atomic operation memory_order_seq_cst
is not necessary for sequential consistency and usually
obscures the programmer’s intent

 Consider:
– Lock-based program can be sequentially consistent, but
– Lock implementation does not need

memory_order_seq_cst, only memory_order_acquire and
memory_order_release

C++ Atomics – CPPCon17 – F.G. Pikus82

Mandatory gripe about the C++ standard

82

 What you wrote:
class C { std::atomic<size_t> N; T* p; … };
C::~C() { cleanup(p, N.load(std::memory_order_relaxed));

 What you said:
C::N may be accessed by another thread while the object
is being destructed – be very afraid!

 What you probably meant:
I wish the standard let me say N.load_nonatomic() so I
don’t have to terrify people unless I really want to

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus83

C++ and std::atomic

83

 Atomic variables and operations on them
– Member function operations (use them) and operators

 Performance of atomic operations (not always fastest)

 Memory barriers
– Essential for interaction of threads through memory
– Significantly affect performance

Loude

Loude

Loude

Loude

Loude

Loude

Loude

C++ Atomics – CPPCon17 – F.G. Pikus84

When to use std::atomic in your C++ code

84

 High-performance concurrent lock-free data structures
– Prove it by measuring performance

 Data structures that are difficult or expensive to implement
with locks (lists, trees)

 When drawbacks of locks are important (deadlocks, priority
conflicts, latency problems)

 When concurrent synchronization can be achieved by the
cheapest atomic operations (load and store) – see my talk
on RCU

Loude

Loude

Loude

Loude

Restricted © 2017 Mentor Graphics Corporation

std::atomic<questions> any_questions;
any_questions.load();

Restricted © 2017 Mentor Graphics Corporationwww.mentor.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Adding a Source
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

